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Preface

This technical report consists of three parts. The central problem is

the extrapolation of band-limited signals.

In part I, several existing algorithms for band-limited extrapolation are

Ucompared: Two-step procedures appeared to give better reconstructions and require

less computing time than iterative algorithms.

In part II, five basic procedures for iterative restoration are unified

using a Hilbert Space approach. In particular, all known iterative algorithms

for extrapolation of band-limited signals are shown to be special cases of

Bialy's iteration. -We-also e" faster algorithms than that of Papoulis-

Gerchberg. G.#....

In part III, the extrapolation problem is presented in a more general

setting: Continuation of certain analytic functions. Ww-p .e two-ee

procedures for finding the continuation of these functions. Some new

procedures for band-limited continuation are also discussed as well as the

case in which the signal is contaminated with noise.
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.A

We present some computer simulation results on the band-limited signal

extrapolation problem. First, the performance of several existing algorithms

are compared for the noise-free case. Then we describe some modifications of

these algorithms for computing the extrapolation when the given signal is

contaminated with noise. Computer simulation results for both the noiseless

and noisy cases are included. From these results, the following preliminary

conclusion could be drawn: Two-step algorithms appeared to give better

L reconstructions and require less computing time then iterative algorithms.
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I. INRDCION

The band-limited signal extrapolation problem was addressed by several

authors ([1] - [10]. among others). Some algorithms for computing the

extrapolation were also given. But probably the most well-known algorithms in

* the engineering literature are those of [21, [3] and [6], [8]. Although some

numerical examples were given in [6], a numerical comparison between both

algorithms seems not to be available in the easily accessible literature. In

-, this paper, the numerical performance of several existing algorithms are

compared by means of computer simulation examples (Section I). Then some

modifications of these algorithms are proposed for getting the extrapolation

when the given signal is contaminated with noise.

Let us recall what is meant by band-limited signal extrapolation. Assume

that g: R -) C is an 12-band-limited finite-energy signal, i.e.

A .W - 0. W [-0,0]

A
where g denotes the Fourier transform of g. If we are given a piece of g, g:

[-A,A] -> C, we will be able to recover S(x) for x' [-A,A], because g is an

- analytic function. Band-limited signal extrapolation is the problem of

computing g(x) for all x from the known values g(x), xE[-A,A]. Several basic

-" models relevant to the solution of the extrapolation problem were given in [1]

(also [9]).

Probably the most well-known technique for solving the problem is given

by the Iterative procedure (12],[3]):

L go = initial 0-band-limited approximation

u a sincQ * (J[_.A]S + (1-[-A.A]) gu-) (1)
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where I[_AAJ is the truncation operator to [-A,A] and I denotes the identity.

Soso generalizations of this procedure were given in [4]. The numerical

computation of (1) can be accomplished by means of the two following

techniques:

(i) Implementing the convolution by using FFT

(ii) Sampling the iterative equation

h =initial guess

hu hu-i + sinc T 3 [-A,A](S - hu-1) (2)

Note that recursion (2) is equivalent to (1).

Technique Ci) leads us to the following discrete recursion:

N-i12ij/71,u+.(j) - 1 m- Gu Cm) , e je[-N,N-1] (3a)
Cm) I N

m-'-N, kO 0 [f n x Iml < N-1

SU(m) =(3b)

N=-1

, (all~~S), II_

T(j),J--Nor [Al IjI N-1 (3c)

In formulas (3b) and (3c) A denotes the distance between consecutive samples

of S Inside e-AAc. It is to be noted that A should be chosen so that [A] i

['].The convergence of this procedure was shown in [5]. Some relationships
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between the solution to (3a)-(0b)-(0c) and the solution to the extrapolation

problem were given in []. In Appendix B. we will show that the limit of the

iterative algorithm (3a)-(3b)-(3c) can be obtained by means of a certain two-

. step procedure ([6]). (A related discussion is given in (11]). Numerical

comparison between both algorithms will be given in the next section.

On the other hand, technique (ii) originates the following iterative

procedure:

SuQi) = Su- 1(j) + A 7 sinc[(j-k)A1(8(kA)-S,_(k)) (4)
ke[-A.A]

This recursion was shown to be convergent in [6]. It was also shown ([6])

that the limit of the procedure can be computed by means of a two-step

algorithm. The relationship between this discrete technique and the solutionI
to the extrapolation problem was discussed in (7]. In the next section, the

solution given by this two-step procedure will be compared with the two

techniques mentioned earlier.U
If the piece of the signal g is contaminated with noise, the situation

will be completely different. First, the extrapolation problem will not have

any solution (unless the noise is also 0-band-limited). Therefore. the

problem has to be restated. Several attempts were made in this direction

([1].[61).

Even though equations (1) and (2) are no longer convergent, the discrete

iterative procedures (3a)-(3b)-(3c) and (4) are indeed convergent. However,

the extrapolations obtained by means of the two-step algorithms are of poor

quality in the presence of noise. This shows that some sort of stopping rule

is necessary for the successful application of the iterative procedures in
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order to prevent the noise from propagating too much into the reconstructions.

We also present some heuristic results obtained by modifying the two-step

*algorithms to cope with noise in the given part of the signal. This will be

done in Section III. The numerical results obtained will be compared with an

iterative Vienner-type procedure. The convergence of this iterative algorithm

is proven in Appendix A.

II. THE NOISE-FRE CASE

In practice, the case in which S Is not contaminated with any noise is

not interesting. However, if no algorithm can perform well in the absence of

noise, there will be no hope to solve the problem In cases where some noise is

present.

As it was pointed out in the Introduction, three algorithms will be used

for the extrapolation of S. Another algorithm for the noisy case will be

presented in Section MI. It can also be used for the noise-free case; this

will be done in Section 111.4. In our examples, the function S will be given

by the formula

/sin x
2

g ~ a 2 7, onx e R

The Fourier transform of & is shown in figure 0. Note that S is band-limited

to(-.]

We will use the following values for A; A 1 .i A2 - 1/2 and A3 - 1/4.

It is worth pointing out that there exists a fundamental difference

between the case A,. and the cases A2 and A3 . When the function s is sampled



over x -(-1,1) (say, 32 samples) and DFT of these staples are used for

U approximating g, the two peaks in the frequency space are still distinguished

F (see Fig. 1a). On the other hand, this will not be the case for (-1/2,1/2)

and (-1/4.1/4). The corresponding plots are given in Figures 1(b) and 1(c).

All the extrapolations will be computed for x e (-3,8).

In this section we will apply the discrete iterative procedure given by

equations (3a)-(b)-(3c). For all the cases we will use 32 samples in the

- known range of the signal g. Therefore, 32 unknown frequency values are to be

sought. For A - 1 the length of the DFT will be 256, for A = 1/2 it will be

512 and for A =1/4 it will be 1024. Figures 2(a), 2(b) and 2(c) depict the

o resolution of the Fourier transform obtained after 10 iterations for (-1.1).

(-1/2,1/2) and (-1/4,1M.), respectively. Figures 3(a), 3(b) and 3(c) show the

* result obtained after 100 iterations. Several conclusions can be drawn from

3 these examples. For the case A -1, some negative values of the spectrum have

been removed and the two peaks are also more clearly distinguished after 10

iterations. (Compare Figures 1(a) and 2(a)). However, the improvement

* obtained after 100 iterations is not significant (see Figure 3(a)). For the

case A - 1/2 and A - 114, the peaks are not distinguishable after ten

iterations (see Figures 2(b) and 2(c)). This situation is the same for A =

1/4 when the number of iterations is 100 (see Figure 3(b)) and 1,000 (figure

4(b)). On the contrary, the situation improves for A = 1/2 when the number of

iterations is increased up to 1,000 (see Figure 4(a)).
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As it was pointed out in Section 1, the lilit of the iterative procedure

(3a)-(3b)-3(c) can also be obtained by means of a two-step procedure. This

two-step procedure was also given in [61. However, in [61, the relationship

between this procedure and the algorithm (3a)-l3b)-(3c) was not discussed.

* Let L be the following (2n+1) x (2n+1) matrix,

L(k h) - 2iJ (k-h) /, -n k.h In
j-n

where M = 2N + 1. The matrix L is positive definite and therefore, we can

always compute the solution x: (xh)_n~h n of the system of equations:

Lx- y (6)

The two-step procedure consists of first solving equation (6) when y - (g(kA).

k = -n,...,n), and then computing the extrapolation as follows:

n sI L 1 *2aij(k-h)/M (7)
h-n M j=_n

where -- ( k + -. The extrapolation zk is the limit of the iterative

algorithm given by (3a)-(3b)-(3c). The proof of this fact is relegated to

Appendix B. This way of proving the convergence of (3a)-(3b)-(3c) is simpler

E than that of [5] where non-expansive properties of certain operators were

used. We have chosen an odd number of points so that L is real. In our

ezamples we will use 33 points. Figure 5 depicts the Fourier transform of the

*@ extrapolations obtained by using this two-step procedure. Figure 5(b) shows a

much better resolution for A = 1/2 than that obtained in Section II.1 (compare

0
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Figure 5(b) with Figures 2(b), 3(b) and 4(a)). Figure 5(c) shows the result

p obtained for A - 1/4. The quality of the reconstruction is good, although

some artifacts are present in the lower part of the peaks. This example also

shows how slow the iterative technique given in Section II.1 is (Figure 4(b))

since it should converge to the same solution. Wo recall that the result of

Figure 4(b) was obtained after 1,000 iterations.

II.3

We now consider another two-step procedure ([6],[8]). As we have pointed

out in Section 1. this two-step procedure will give us the limit of the

iterative approach (4). This iterative procedure (4) and some of its

- generalizations were found to be very slow ([7]) and no numerical examples

". using them will be included here.

Let us consider the matrix K e R(
2n+l)x(2n+1)

k(ij) = sinf0(i-.) -n j (8)n(i-j) ' -nijn()

We now solve the system of equations:

Kx y, (9)

where y = (S(kA), k = -n....,n). If x = (xh)-n< n  denotes the solution

(which exists and is unique), the extrapolation is computed by means of the

formula

S iJtai-h)jk xh =  i - < i ( a (10)
h=-n

I: 3 .- ' < i < (10)



The Fourier transform of the extrapolations obtained by using this technique

are shown in Figures 6(a), 6(b) and 6(c). It Is worth pointing out that the

*.resolutions obtained for all the cases are very good. For A -1/4, the

* . estimated Fourier transform Is even bettor than that of Figure 5(c) since, for

this Algorithm, no artifacts are introduced in the reconstructions (see Figure

6(c)).

To conclude this section we would like to point out some differences

U ~between the two-step procedures (6-(7 and (9-(1). Both procedures are

intended to provide approximations to the solution of the continuous

* .extrapolation problem. However, the nature of the two approximations are

completely different. The extrapolation provided by the two-step procedure

(6-(7 is a U-periodic discrete signal; z k' -<k<+- which is band limited to

-nn]

N

Y. z e-2 nikj/H .O0. Ii >n, M -N+1
k--N k

and zk - s(ke k n. On the other hand. the extrapolation given i (9)-(10)

is a finite-energy (and therefore non-periodic) sequence s k - = , h e

* band-limited to (-Q&.fl&]. i.e.

j.4..

k=1 k0 -k .0, iwi > al&

and sk - g(kA) k1 J n. It is known that if A -> 0, then the extrapolation

S kh will approach the continuous extrapolation g (7]). On the contrary, no

Ssimilar result is known for the periodic extrapolation zk' A more detailed

discussion about four basic models for extrapolation which are related to !he

0
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P two-step procedures can be found in [1].

III. TE NOISY CASE

In this section we will discuss several techniques for solving theI
extrapolation problem when the given signal is contaminated with some additive

noise. The noise which will be used is white and uniform and its values will

range on (-0.005, 0.005), on (-0.05, 0.05), and on (-0.5, 0.5). They will be

called third digit, second digit and first digit noise respectively.

In what follows, we will compare the iterative procedure given by

formulas 13a)-(3b)-3(c) applied to the noisy case with some heuristic

modifications of the two-step procedures described in Sections 11.2 and 11.3.

In Section 111.4 these algorithms will be compared with a new iterative

5 procedure designed to cope with noise.

III.1

We have mentioned in Section I that the iterative procedure 3(a)-3(b)-

3(c) can also be applied to cases where the samples g(kA), -n I k K n are

corrupted with noise.

For A=1, the algorithm distinguishes the peaks well in the noise-free

case (see figs. 1(a), 2(a) and 3(a)). Adding second digit noise to the known

samples causes some artifacts in the reconstruction (see figures 7(a) and

7(b)). This is also the case when first digit noise is used (see figure

7(e)).

The solutions provided by the algorithm are almost the same as in the

noise free case when third-digit noise is added to the known samples. This is
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also the case when second-digit noise or first digit noise is added to the

original signal g on (-1/2,1/2) and (-1/4,1/4). Figures 7(c) and 7(d) shows

. - the result obtained after 500 iterations for (-1/2,112) and (-1/4.1/4)

respectively when second digit noise is present in the samples. Figure 7(f)

and 7() plot the corresponding Fourier transform after 500 iterations for

first digit noise. Compare the results so-obtained with those of figures 3(b)

and 3(c).

We know that the limit of this procedure coincides with the extrapolation

obtained by using the two-step algorithm described in Section 11.2 (see

Appendix B). We have tried the two-step procedure given by formulas (6) and

(7) when some noise is added to the samples g(kA), -n ( k I n. The results

are completely wrong due to the presence of noise. However, the Iterative

procedure seems not to be so sensitive to the noise. This is due to the very

slow rate of convergence of the algorithm, which takes 1.000 iterations to

build part of the peaks for A - 1/2 (figure 4(a)) and probably much more than

that for A = 1/4 (figure 4(b)) when no noise is present. Therefore, the first

thousand iterations will not be enough to Set a reasonable approximation to

the true extrapolation if some noise is added to the given samples. It is

* clear that any attempt to speed up the convergence of this iterative procedure

will also propagate the noise faster than the present algorithm.

* 111.2

In this section, we modify the two-step procedure given by formulas (6)

and (7) to cope with noise. The modification consists of adding a positive

number y to the main diagonal of the matrix L, obtaining a new matrix t, then

solving the system of equation Ex - y and using formula (7) to get the

a
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extrapolation.

The motivation for this modification is two-fold. It is well known that

L is an ill-conditioned matrix; therefore small perturbations introduced in

g(kA), -n ( k I n may produce large changes in the solution zh , -n I h I n.

! and this may overwhelm the extrapolation: Zk, -N I h I N. If we add some

snail positive number to the diagonal, the matrix will become better

conditioned and, therefore, the solution of the system of equation (6) will be

a more stable problem.

The other reason for such modification is that the two-step procedure was

shown to be the best estimation to the extrapolation problem when the noise to

signal ratio is added to the diagonal of the matrix K given by formula (8)

(see [6]). It is obvious that K and L are different. However, some related

*optimality property might be proven when L is used instead of K.

Figures 8(a), 8(b), 8(c) and 8(d) show the results obtained for the case

A - 1 by means of this regularization technique. Third-digit noise has been

Uadded to the signal. Even though the spectra are different, the sensitivity

of the reconstruction with respect to the parameter T is not large.

Figures 9(a), 9(b), 9(c), 9(d) shows the results obtained for A - 1 when

second-digit noise is added to the given signal. In this case, the sensitivity

of the reconstruction with respect to X is more evident.

Figures 9(e), 9(f) corresponds to the first digit noise case. It is worth

noting that the case given in 9(e) will be a reasonable reconstruction if the

available information about the exact band-width is used before plotting the

Fourier transform.

I
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Figures 10(a), 10(b) and 10(c) show the spectra of the reconstructed

signal for A - 1 when second-digit noise is used. The result obtained is not

of good quality. Nowever, some more a priori information about the true

spectrum will be of great help. For instance, a positivity constraint applied

to figures 10(a) or 10(b) will provide a much better result. This is also the

case when first digit noise is used. Figures 10(d), 10(e) show the

reconstruction for this case.

Figures 11(a), 11(b) and 11(c) show the results obtained for the case A-

114 when second-digit noise is used. It Is clear that the sensitivity to the

parameter X. is much more critical. This is also the case when first digit

noise is added to the signal (see fig. 11(d), 11(e)). Once more. a positivity

constraint will provide a good reconstruction if X-0n.000003 is used (fig.

11(a)). Figure 12 depicts the results obtained when third-digit noise is

added. We would like to emphasize that if positivity of the Fourier transform

is used as a priori information, that is to say, we set to zero all negative

values in the reconstructed Fourier transform, the results are better than

those obtained when no extrapolation is performed. For instance, fig. 11(f)

depicts the Fourier transformation of the signal plus noise in (-1/4,114) when

14 no super-resolution is tried. Compare this result with that of fig. 11(d)

improved when positivity information is incorporated in the spectrum.

4 M1.3

We have pointed out in 111.2 that the same regularization technique can

be applied to thte two-step procedure given by formulas (9) and (10) (see

Section 11.3). Some motivations for such techniques can be found in 16]. if

we denote by Kthe matrix K +~ XI, where I is the identity. the technique
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consists of solving the system of equations x y (where y -(#(k&)) k-

3 -n...,a) and using equation (10) to obtain the extrapolation. Figure 13(a)

shows the results obtained with this technique for the case A - 1 and when.

- third-digit noise Is used. Figures 13(b) and 13(c) show the results obtained

for two different values of X,~ where second-digit noise is added to the

signal. The corresponding plots for first-digit noise are shown in fig.

13(d), 13(o).

- Figures 14 and 15 show the reconstruction obtained when third-digit.

second-digit and first-digit noise is used for the case A -1/2. Figures 16

*and 17 present the corresponding results for the case A -1/4. For this

technique, we have shown the plots corresponding to the best results obtained.

Several conclusions can be drawn from these examples. For A - 1/4 and A-

112, when first-digit noise is used. it is seen (figs. 15(c), 15(d), 17(c),

* 17(d) and 17(e)) that none of the values used for X. provide a reasonable

result. In this case, the main conclusion is that the reconstructed Fourier

p transforms are of very poor quality. (The case A - 1/4 is even worse than A

1/2) For A - 1 and first-digit noise, the results look much more encouraging.

Taking into account the amount of noise introduced in the observation, we

* conclude that the reconstructions are acceptable. As we have remarked above

they will improve if some positivity constraint is used to remove the negative

artifacts (see fig. 13). Another important observation is that the results

obtained for A - 1/4, A - 1/2 are much better when the technique given in

* 111.2 is used instead. Comparing fig. 10(e) with fig. 15(d) &ad fig. 11(d)

with fig. 17(c), 17(d), 17(e) we conclude that the two-step procedure used in

111.2 suits this numerical simulation better than that of section 111.3 when

noise becomes high enough. In case of lower noise we see that the best values
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for L need to be smaller as the observation part of the signal shrinks.- In

addition, the sensitivity of the reconstructed Fourier transform in terms of 1

increases as the length of the known part decreases; for example, figures

..-- 17(a) and 17(b) show that the result may change drastically. It is also clear

that a smaller ). results in more positive and negative overshoots and'ringing.

Again, some a priori information may help improve the reconstruction. This

will be the case if a positivity contraint is used because the negative

artifacts in figures 13(d), 14(b), 14(c), 15(b), 15(c), 15(d). 16(a). 16(b)

and 17(b) will then be removed.

111.4

In this Section, we present a new iterative technique for the noisy case.

" We will make use of the Periodic Discrete Prolate Spheriodal Sequences (P-

DPSS) (see Appendix A).

Let f(m) be a periodic bandlinited signal of period 2N-1,

A
f(k) - 0 for U(Ikl<N-1 (11)

A

where f(k) is the DFT of f(m), and U(N.

Let

y(n) - f(m) + n(s), for 0 1 m < D (12)

y(s) is the observed sequence of length D. The operator T is defined as

Z(n); 0 - < D

T z(m)i= (13)

0 otherwise



and the operator B is defined as the following

rx(m); IkI ( U

B x (a) IDFT (14)

0 ; otherwi se

Also for convenience, we define

WE) y(m)) N - x(.)y(m)

" (Zx(m) ()y(m) (16).."(x(m) ,y(m)) D  -( )Y M (16)

For the given noisy observation y(m), we can expand it in terms of Ok(m )

as follows

y(m) =- bk *k(U) , m([O,D-1] (17)

S where

.. k  - 1/)k  (y(m), Ok(m))D

- 1/kk (f(m), Ok(m))Id + 1 1%k (n(m). Ok (m))D

= ak + 1/.knk

and

ak  - (f(,), Ok(m))N

n k t (n(m). ok(m))D

We wish to find a set of c ks such that



• , I . 16

f*s4) = ~.Okbkok() ; 0 a • ( N (18)

minimises the mean square error R Iff f-fe)N.

Using the orthogonality properties-of k,$I we Gas write the mean square

error as

B (4 (ak-kbk)2 )

minimization of the mean square error leads to

2
E (akbk) a

*k 4b2) 2 2 2(
k nk +ak 2 +

k

where we have assumed that the noise and the signal are independent.

Equation (19) is similar in form to the familiar Weiner filtering. In

practice, a2r. a , and )L2 are difficult if not impossible to obtain. A
ki k k

possible approximation is to assume

- constant (20)
a2
ak
ck = 11 + J81, (21)

Even with these approximations, direct solution still require solving for

Xk's- Fortunately, there exists an iterative algorithm which converges to the

4 function given by Equation (18) when ck is given by (21).

k
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Iterative Algorithm:

Let f0 () - 0

) (1-p)fu(u) + BT [BT[y(m) - fn(m)]] (22)

D-1m then lir fn(m) Z 1/(1 +4) bk'k(m) (23)
a-) k=O 2

The proof of its convergence is relegated to Appendix A. It is clear that if

there is no noise present, we obtain another algorithm for the noise-free case

by setting p - 0 in formula (22).

Figures 18(a), 18(b) and 18(c) show the result obtained with p - 0 after

200 iterations. In fig. 18(a). the Fourier transform of the extrapolation for

A - 1 is shown. The result can be judged as good. However, figures 17(b) and

U17(c) show that the procedure suffers the same drawback as the algorithm given

in I1.1: The number of iteration required to distinguish the peaks is

enormous.

Figures 19(a) and 19(b) shows the performance of the algorithm for (-1,1)

when second-digit noise is added to the given signal. The value used for

was 0.0. Figures 20(a) and 20(b) shows the result obtained by the same

procedure when p - 0.01. It is clear that the new value chosen for

eliminates the artifacts of figure 19(b) after 200 iterations (figure 20(b)).

Figure 21 show the results obtained by using the procedure for A - 1/2

where second-digit noise is used. Once morethe different performance between

= 0 and p v 0 is clear. Figure 21 (b) shows that the artifacts of Figure 21

8a) have been eliminated. However, the peaks are less distinguishable. The

results obtained for the case A - 1/4 are similar to those of section 111.4

and they will not be included here.
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IV. CONCLUSIONS AI DISCUSSIONS

The numerical performance of several algorithms was compared. Two basic.

assumptions were made: the continuous cut-off frequenoy of the given signal

is known exactly, and the Fourier transform of the signal was supposed to be

real. In the numerical examples iven in Sections II and III the imaginary

part of the reconstructed Fourier transform was negligible. It turns out from

these numerical examples that the non-iterative techniques (two-step

procedures) produce better results than those provided by the iterative

procedures. More numerical examples are in order to verify or disprove this

conclusion. Another important aspect of the algorithms which has to be

compared is the number of operations involved in the procedures. If 2n is the

number of given samples of S In (-AA) both two-step procedures need 0(n2)

operations. This is because the matrix involved in the system of equations

(6) and (9) are Toeplitz and therefore 0(n2 )-algorithms are known for solving

the system. On the other hand, at every step of the iterative procedures

*" (3a)-(3b)-(0€) and (22) at least one FFT is needed. The length of this FPT is

N'cn2  c denotes a constant; this is because the following equation has to be

satisfied: [-W]umn. Therefore. we will have 0(n2log n) operations per step.

This analysis shows that the two-step procedures are less expensive in terms

of arithmetic computation time. However, the performance of the two-step

procedures for the noisy case depends on choosing the correct parameter X.

Therefore, the relationship between the optimal X and the noise has to be

further studied.

The sensitivity of all these algorithms to changes in the cut-off

* frequency has to be investigated because the exact value of the highest

frequency might not be available in practice.

0q
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Anvai~jx A

To establish notation, some properties of Periodic Discrete Prolate

Spherodial Sequence (P-DPSS) (61 are listed below.

For D > 0 and U > 0. we can find

~o(.) ~ ** * * (= U Z

and xo# IV )-*'D-1 such that

(i Tk(m) - ~~m 0 j a ( N

k m Oslo .. D-1

(0 ~k ()'0 (a) - 6 k, j

(o~m 01 (u) 11 k 6 k, j

(iv) B 000U) - 00) Ok is bsndlimited

(v k~) k -0,1, ... ,D-1 form a basis in the

vector space of sequences of length D.

B and T are defined by equation (13) and (14) respectively.

We will now prove the convergence of the procedure (22).

Section III.A.

Let f U(M) dkZ'd 00m),0 jm(<N. (A.1)

* by substituting Equation (A.1) and Equation (17) into Equation (22), we have
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d 2
ku+1 = (l-g)dk,u + Ik(bk - dka) (A.2)

-(1- (M+))dk,u + lbk

so

db 2~ + ji)(A.3)

chosing A>0 such that l-(X + <)I 1, or A + X2 < 2
k k

we have

limf( L k(m), which proves Equation (23).

lk
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We prove that the two-step procedure given b formulas (6) and (7) in

Section 11.2 provides the same extrapolation as the iterative technique (3a)-

(3b)-(3c).

We know that the matrix L given by (5) is symmetric and positive

definite. It is also easy to prove that all its eigenvalues are less than 1.

Therefore, the solution of the system of equations (6) can be computed as

follows:

10 U 0

lu"*l - Xu + (y - L Vu )  ,u > 0 (B.1)

If we also denote by L: L(k.h) the matrix defined by (5) when ka(-,+n),

he[-N,N] and if we apply L to both sides of equation (B.1), we will obtain

y 0

yU+l M yu + LT(y - y) (B.2)

where T(y - yU)(m) = 0 if m 0 [-n,n] and (y-yu)(m) if m e[-n~n]. It is easy to

see that Lyu = yu, for all u > 0. Therefore, equation (B.2) can be written as

y°0
y 0

y U+ a L(yu + Ty - Tyu) - L(Ty + (I-T)yu) (B.3)

where (I-T)yu(m) = 0 if m e[-n~n] and yU(m) if m E[-n,n].

It is now a simple exercise to verify the equivalence of the procedures (B.3)

and (3a) -(3b)-(3c) .

4!
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A UNIFIED HILBERT SPACE APPROACH TO ITERATIVE
LINEAR SIGNAL RESTORATIONU

Jorge L. C. Sanz
Thomas S. Huang

Coordinated Science Laboratory
1101 W. Springfield Ave.

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

ABSTRACT

This paper deals with iterative solutions of the linear signal restora-

tion problem: g=Af. First, several existing techniques for solving this

problem with different underlying models are unified. Specifically, the fol-

lowing are shown to be special cases of a general iterative procedure (Bialy

1959 £1) for solving linear operator equations in Hilbert spaces: 1. A Van

Citter-type algorithm for deconvolution of discrete and continuous signals.

2. An iterative procedure for regularization when g is contaminated with

noise. 3. Papoulis-Gerchberg's algorithm for extrapolation of continuous

signals (2],13]). 4. An iterative algorithm for discrete extrapolation of

band-limited infinite-extent discrete signals (and the minimum norm property

of the extrapolation obtained by the iteration (4]) and 5. A certain iterative

procedure for extrapolation of band-limited periodic discrete signals [5].

The Bialy algorithm also generalizes the Papoulis-Gerchberg iteration to cases

where the ideal low-pass operator is replaced by some other operators.

In the second part of the paper, a suitable modification of this general

iteration is shown. This technique leads us to new iterative algorithms for

band-limited signal extrapolation. In numerical simulations some of these

algorithms provide a fast reconstruction of the sought signal.
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I1.2

I. Introduction

C
Iterative reconstruction of distorted signals has received much attention

in the engineering literature. Many algorithms have been presented for dif-

ferent models of signals. The reader is refered to [6] for a comprehensive

review.

In this paper, we will present an approach which unifies a number of

important algorithms in the restoration of linearly distorted signals. The

basic tool which we will use is that of iterative solution of linear operators

in Hilbert spaces. The advantages of this approach, which is based on a

result given by Bialy [1], are the following:

1. Several apparertly disconnected algorithms, some of which have recently

received much interest, can be considered special cases of Bialy's itera-

tion.

2. All these algorithms can be shown to be convergent using a rather general

tool.

3. A simple generalization of the basic iterative procedure will be shown to

provide some new restoration algorithms which perform fast reconstruction

of the sought signal.

Section II reviews some fundamentals of linear operators in Hilbert

spaces. Special emphasis is p'.t on pseudoinverse solutions and Bialy's itera-

tion for non-negative symmetric operators. In Section III, we show that tls

iteration can be used to obtain the iterative procedures mentioned in the

abstract of this paper. In particular, we obtain a generalization of the

* Papoulis-Gerchberg algorithm for the continuous extrapolation problem. In

Section IV, we show how a simple generalization of Bialy's iteration provides

I
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some useful recursive techniques for restoration. Some numerical examples

Ishowing the performance of these algorithms are presented in Section V, where

the application problem is continuous band-limited signal extrapolation. A

numerical comparison of these algorithms with the Papoulis-Gerchberg procedure

I[ is presented.

m

r

I1
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11.4

II. Basic theory

Let us recall what is meant by bounded and compact linear operators in

Hilbert spaces. Let H, H2 be two Hilbert spaces and A: H1 -> H2 a linear

operator. We say that A is bounded (also continuous) if there exists a real

number C such that

IA xll 2  C I1Ill11  for all x eEl
I

where II 1I1 denotes the norm in Hi

The operator A is called compact if it maps every bounded set S C H onto a

set A(S) whose closure A(S is compact. In other words, A is compact if and

only if for every bounded sequence [xno n e N) C H there exists a subse-

quence xk k e N) and y e H2 such that A(xn) y, k -> -. The reader

is refered to [7] for further theoretical details.

Obviously, if a linear operator is compact it will also be bounded. The

converse does not hold in general. However, if H2 is of finite dimension both

class of operators coincide. The adjoint of A is another linear operator At:

H2 -> HI characterized by the following identity:

<Aty, x)H = y, Ax>H2

where < , >H denotes the inner product. A linear operator A: H -) H is called

symmetric if A = At. In that case, we say that A is non-negative if (Ax,x> > 0

for all x C II. We concern ourselves with iterative solutions to the linear

problem Ax = y, where A: U > H2 is bounded and y 6 H2 is given.
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Frequently, it happens that y does not belong to the range of A and

therefore, thre is no x: Ax = y. In that case, one may attempt to find the

minimum norm least squares solution. However, for infinite-dimension spaces

this approach is not always successful because the "least square" solutions

may fail to exist. We need to recall some related results for our applica-

tions.

It is well-known that the range of a bounded operator may not be closed.

The situation is even worse for compact operators since it can be proved that

the range of such an operator is "almost never" closed. Undoubtedly, this

result is the main drawback for a pseudoinverse approach to solving the opera-

tor equation Ax = y, because most of distortion equations in signal processing

are given by compact operators. The following lemmas, which are proved in ref.

[8], help in understanding the matter, and will be useful for the remainder of

our paper.

Lemma 1

Let A: H - H2 be a linear bounded operator. For a fixed y e H2 , let S

(x C HI: Ax = Qy] and N = Ci 6 HI: AtAx = Aty]. Then S = N. (Q: H 2 -> A(HI)

is the projection operator onto the closure of the range of A.) The equation

AtAx = Aty is recognized as the normal equation for A. It is obvious that if

Qy does not belong to the range of A: R(A) then N = S = . Therefore, since

R(A) may not be closed, there exists many points y e 2: Qy R(A). In other

words, N will not be empty iff y 6 R(A) + R(A)1 (I denotes orthogonal set).
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Lemma 2

For a fixed yCH 2, the set of least squares solutions

Cu - Ill: JlAu - yl inf (IlAx - y~i, x e H]))

coincides with the set of solutions of the normal equation AtAu- Aty.

From the comments given above, it is clear that the set of least squares

solutions will not be empty if and only if y 6 R(A) + R(A)1 . In that case,

this set will be closed and convex and therefore, there will be an element u=

A y which has minimum norm among all which satisfy AtAu =Aty.

Another simple but very important property is the following:

Lemma 3

If y 6 R(A), then Ay is the minimum norm solution of the linear equation

Ax = y.

Lemma 3 says that if a solution to the problem Ax = y exists, then the

minimum norm solution will make sense and will coincide with the generalized

inverse Awy. This is a very simple consequence of the fact that y G R(A)

ensures that the normal equation AtAx =Aty has the same set of solutions of

Ax = y.

One would like to have pseudoinverse solutions for every y 6 H How-

ever, as we have shown above this will be possible iff R(A) is closed. In that

case, the generalized inverse A+: 2 w> is a well-defined bounded operator.

The boundeness of A+ shows that finding a pseudosolution Ay is a stable prob-

lem, i.e. small perturbations in the data will produce small chanses in the

pseudosolution A+y. As we have mentioned above, this will be "almost never"

the case if A is compact:

enue6httenra qainA~ =Ayhstesm e fsltoso
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Lemma 4

If A: H
If A: H1 -> H2 is compact and R(A) is closed then A is degenerate, i.e.

R(A) is of finite dimension.

Some examples of compact operators may clarify the matter. Let us suppose

that our distortion can be written either as

a
g(y) f h(x~y)f(x)dx, y ; (-bb) (for all f: I If(x)1 2 dx < =)

S_-a -a

for a continuous model or as

g(m) = l .h(m,n)f(n), m e Z (for all f: Z lf(n)1 2 < m)

nrZ neZ

for a discrete model.

In both cases, under rather general conditions on h it can be shown that

the corresponding distortion operator is compact. Sometimes, the situation is

even worse because the range is not only non-closed but also dense (i.e. R(A)

= H2 ). In practical terms, this means that if the given data g is contaminated

with some additive noise n, the problem becomes intractable from a generalized

inverse point of view. This is because R(A)1 = (01 and therefore, A+g will

never exist if the noise has any component which is outside of R(A) (this is

almost always the case). An example of dense range is provided by the set of

band-limited functions, with a fixed bandwidth 1. It is well known that this

set is dense in the set of finite energy functions over an interval [-a.a]

(see (9],[2]). We hope to shed more light on this problem in section 111.2.

In what follows we will state the Bialy iteration which is also useful

for computing generalized inverse solutions of Ax = y. This iteration is the

main core of the next section, and provides the basic tool for the announced



S- unification of algorithms.

To this end, if A is a bounded linear operator, we denote by JhAil the

infimum of the numbers c: hlAx1l * clxii, for all x e H1 . We also denote by

P the orthogonal projection onto the kernel of A: Ker(A) = (x e Hi: Ax = 0).

Theorem 1 (Bialy, [1])

Let A: H -) H be a linear bounded non-negative operator. For y e H, x0  e

g. H consider the iterative process

X n+1= xn + n(y - Axn(1)

where 0 < a < 2/11A1l.

Then, the sequence [xn, n 1 01 converges if and only if Ax = y has a

solution. In that case x -> Pxo + i, where 1 is the minimum norm solution.

n >m

We would like to make some remarks about Theorem 1. It is clear that if

the initial approximation x0 is zero then (xn) will approach the minimum norm

solution of the equation Ax = y. The theorem also says that this will happen

iff the equation has at least one solution.

Judging from the appearance of (1) it may be said that recursion (1)

0tries to compute a fixed point of the mapping Gx ay + (I - aA)x. However, it

cannot be said that the fixed point and/or the iterative procedure make sense

because of a contractive property of G. In fact, this situation will almost

never occur. The reason of this assertion is given by the following.

Lemma 5

* If A: H -> H is a bounded linear operator such that iteration (1) con-

verges for all y 6 H for some xo, and a # 0 then A cannot be compact, unless If

-
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is of finite dimension.

The proof of this lemma is relegated to the reader. Lemma 5 says that if

A is a compact operator and the dimension of H is not finite (and therefore,

including most of the cases we are interested in) recursion (1) must be diver-

gent for some y. In particular, I - XA will not be a contraction mapping

irrespective of the choice of X.

A relevant characteristic of the hypotheses of Theorem 1 is that A is

assumed to be non-negative, excluding apparently many operators for which this

condition is not met. However, Bialy's theorem can be used to compute itera-

tively the minimum norm least squares solution of any bounded linear operator.

This result will be obtained very easily if we recall that the minimum norm

least squares solution (whenever exists) is the minimum norm solution of the

normal equation AtAx = Aty. Then, Bialy's theorem can be applied because AtA

is a non-negative linear bounded operator. Thus, we have:

Theorem 2

Let A: HI -> H2 be a bounded linear operator. y e R(A) + R(A) 1 consider

the iterative equation:

X =0

x n = Xn-1 + aAt(y - Axn_1 ), n > 1 (2)

whe-e 0 < a < 2/1IAtAII. Then [xn) converges to the minimum norm least s'uares

solution A+y.

It is worth noticing that Theorem 2 assumes y E R(A) + RA)I  and there-

fore, the sought generalized inverse solution A+y exists.

p
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To end this section, we would like to point out some results which are

connected to those of Theorem 1 and Theorem 2. Two special cases of Bialy's

theorem were proved earlier for integral operators, which are a case of com-

pact operators arising very often in practical applications. In 1956, Fridman

([10]) proved Theorem 1 for the case: A is given by Af(x) f h(x,t)f(t)dt,
-a

f is any finite energy function, i.e. f e L2 (-a,a), and the kernel h is posi-

tive (and symmetric: h(x,t) = h7)). In 1951. Landweber ([11]) proved

Theorem 2 for the case: Af(x) h(x,t)f(t), removing the assumptions made

on h(xt). In both cases, h(x,t) must define a compact operator, a condition

that is often met.

A final remark is in order; it can be easily obtained from Theorem 2 and

the discussion on pseudosolutions presented in this section, that iteration

(2) will appraoch the minimum norm solution of the equation Ax = y. whenever y

e R(A). To see that we just recall that (x 6 H1 : AtAx = Aty) = [x 6 HI: Ax

y) for y e R(A). In particular, if the solution exists and is unique it will

be also obtained by the procedure (2).
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III. Ayplications

AIn this section we will show several applications of the results dis-

cussed in Section II.

o III.1 Van Cittert-type algorithms.

We now consider a continuous-continuous deconvolution problem. Let L2 (B)

denote the Hilbert space of finite energy functions defined on B, i.e. L2(B)

= (f: B -> R: fB If(t)1 2dt < -). Let h be a function such that the following

linear operator is bounded:

A: L2(S) -> L2 (T)

f -> Af(t) = fS h(t-s)f(s)ds, t 6 T

(If T or S is bounded, and h satisfies fSfTlh(s-t) 2dsdt < then A will be

Ibounded. In that case, it can be proved that

IAf L2 (T) j fsfTJh(s-t)l2dsdtJ / 2  jfjL 2(S)

where Hy L2(B ) stands for the norm (fBY(t),2dt) 1 / 2 . Another case for which

A is bounded will be obtained if the function h has compact support, that is

to say, h(s) = 0 if s 0 C where C is a compact set in Rn.)

If S = T, 3S denotes truncation to S and h satisfies the additional pro-

n A
perties f h(t)J 2dt < - and h(w) > 0 for all w e Rn, where h denotes Fourier

~Rn

transform, then A is a non-negative operator. To see this,

<Aff)L2 = fs(Af)(s).f(s) = f Rn(h*Jsf)(s)Jsf(s)ds

where the symbol * stands for convolution, defined over Rn. By means of

Parseval's equality, we obtain <Af,f> = f (llaJsf) t(JSf)"1(w)dw. But

L2SS n ()(Jf ](~ w u
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fA A hw) (Jf)A(w)I2dw,
(hJsf)(w) h(w).(sf) (w), then (Af.f> 2  f Rn h(W).l which

is always non-negative.

We now assume that g(s), s e S is the output of our continuous system

defined by A. If we are interested in recovering the input f(s), s e S. we can

apply Theorem 1 to obtain a sequence (fn) given by

fn+1 fn + u(g - hmjsfn )  (3)

which converges to the minimum energy signal that produces the output g.

Another way of writing equation (3) is

fn+l(S) = fn(s) + a(g(s) - fsh(s-t)fn(t)dt), s E S,

or equivalently, fn+l(s) - ag(s) + (fn(s) - afsh(s-t)fn(t)dt).

This is a Van Cittert-type recursion whose convergence is ensured.

Several remarks are in order. Perhaps the most important observation is that h

may have zero frequencies without affecting the convergence of the procedure.

It is also clear that many choices of a can be tried whenever 0 < a ( 2/hlAll

(if S is bounded we can chose any a which satisfies

* 0 < a < 2/(f fs ih(x-t)1 2dxdt]l/2).

The classical Van Cittert's algorithm is for the case S = T = Rn. It is

this assumption what makes the proof of Van Cittert's iteration (3) so simple

if a is chosen to satisfy I1 - ah(w)l < 1 whenever h(w) # 0 ([61). Therefore,

A
if S # Rn, under the more stringent condition h(w) ) 0, Bialy's iterati - pro-

vides a non-trivial extension of the classical version of Van :ittert's algo-

rrithm.
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We next consider a discrete-discrete deconvolution problem. In this case,

the underlying Hilbert space is 12 (B) = (as: m e B, 1 la 12 < -), where BA .eB

is a subset of Zn . Let h(m) be a sequence such that the operator

A: 12 (B) -> 12 (C)
U

x(m), m e Zn -) h(k-m)x(m), k 6 C
m6B

is bounded. Several conditions on h, similar to those given for the continuous

case, can be found to ensure the boundness of A.

If h satisfies Z Jh(m) 12 ( , B = C and the Fourier series of
m e Zn

h: 7 h(m) 2 nnt > 0 for all w, then Bialy's theorem will apply. Thus, the
m j Zn

iteration

x(k) = X (k ) + a(g(k)-hJ (k)), k E B (4)m m-1 *Bxm-1

will converge to the minimum norm solution of the problem: g(m) = (h*JBf)(m),

m 6 B, provided that at least one solution exists. Equation (4) can be written

as follows

Xm(k) = ag(k) + xm_1(k) a . h(k-j)xm 1 (j), k C B ()

j C B

with 0 ( a < 2/11All. A simple rationale for choosing a is 0 < a < 2/(suplhl).

Equation (4) (or its equivalent form (4')) is a Van-Cittert's recursive

formula, when the model for the observed and unknown signals are both

discrete.

It is worth noticing that equation (4') can also be written by using an

operator-type notation:
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x(k) ag(k) + ((6 - ah)*JBxml)(k) k 6 B

where 6: Zn -> C: 6(0) 1, 6(k) = 0 if k A 0.

Recursion (5) was also considered in [6] for the special case in which B

is bounded. Under this assumption, equation (5) was shown to converge in ref.

[12]. However, in [12] it was also proved that if B is bounded a can be chosen

independently of B so that (6 - ah)*JB is a contraction mapping under mild

A n
assumptions on h (which include the case h(w) > 0 for all w e Rn). We think

that it is now understood what is the theoretical importance of the a priori

constraint that the sought signal is limited to the set B. From lemma 5 and

related discussions, it is seen that (6 - kh)*JB will be a contraction mapping

for a certain X and for a rather general h only if B is bounded. On the other

hand, if B is not bounded, equation (5' was shown to converge to the minimum

norm solution of the deconvolution problem (Theorem 1), but the contractive

property of (6 - Xh)*JB will not hold in general.

To conclude this subsection we would like to emphasize that for the

continuous-continuous model, if the set S where the input signal f is not zero

is bounded, (I - ah)*3 S will not be a contraction mapping in general. This is

a major difference between the continuous and discrete model, 12 (B) is of fin-

ite dimension if B is bounded whereas L 2 (S) does not have this property.

111.2 Pseudoinverse regularization
0

The deconvolution problem that was discussed in Section III.1 usually

requires a more involved solution due to the following facts:

1 1. g is given with noise and therefore the solution to the problem g = Af

may not exist.

0



IT. 15

A
2. h may not satisfy h(w) 2 0 for all w.I
3. The period of time where the observation g is given: C may not coincide

with the support B of the sought signal.

if A full answer to problems 2 and 3 and a partial solution to 1 will be given in

this section. To this end, we will show the convergence of an iterative recon-

struction algorithm. We will consider the discrete-discrete model only. Simi-

lar comments and results hold for the continuous-continuous case. With the

same notation as in Section 111.1, let us suppose that our observation g(m), m

C C is given with noise. Assume that g G R(A) + R(A)'. Then, the following

problem will always have a solution: AtAf= Atg where At denotes the adjoint

of A (see Section II). For the convolution case:

* (Af)(m) = E_ h(m-k)f(k),
k GB

m 7 C then, (Atq)(k) = Z h(-k+m)q(m), k C B. This means that At is also
mEC 

given in terms of a convolution where the new kernel is h (-m). Specifically,

AtA is given by

(AtAf)(j) = h ( - h(m-j)h(m-k))f(k), j 6 B
kCB m C

which is always non-negative, as it was pointed out in Section 2.

Thus, we can apply Theorem 2 for computing the minimum norm least squares

solution of Af = g. if g E R(A) + R(A)1 , by means of the iteration:

I = 0

m = Xm-l + aAt(g - Ax _i) m _ 1 (6)

where 0 < a , 2/(IA[2).
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c An equivalent expression for (6) is obtained by replacing A and At

xo  0

k e B, x m(k) = a h(m-k)g(m) + x M-(k) - a ( h(m-k)h(m-j))f(j)

M e C j 6 B m e C
(6')

It is worth pointing out that equation (6) or (6') will not converge if the

noisy data g V R(A) + R(A)1 . However, we think that this approach is useful

for understanding the limitations of the technique and for setting a condition

to ensure convergence or divergence of che iteration.

* A particular case is obtained for B = C = Zn. In that case, the technique

that consists of convolving the equaticn h * f = g with h(-m) has been pro-

posed independently by several authors ((6],[131) but the approaches used were

ntconceptually different. For B = C = Zn , the operator AtA is given by a convo-

lution whose kernel is h(m) * h(-m). Then, the transfer function of the system

AtA is [g(w)]2, w £ Rn. Since Ih(w)1 2 is always non-negative, Van-Cittert's

algorithm applies to the equation [h(-m)*h(m)]*f = h(-m)*g, obtaining the fol-

lowing frequency-space recursion:

0 o(W) = 0
X (w)12=0

00

X (w) =a ( -w) (w) + (I aI (w)I12)^ m w 7

, :is, of course, equivalent to (6') wh, B = C = Zn. It is worth pointing

;J: there should be a solution to the problem h(m)*f = g in order to

:rte-energy discrete signal whose Fourier transform is the limit of

. 'tove, the pseudoinverse approach provides a full answer to

i nd C are any subset of Z n , and the convergence of (6) is
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characterized in terms of the data g.

To end this subsection we would like to remark that if g V R(A) + R(A)1

then (6) will not converge. Therefore, caution is recommended when the itera-

tion (6) (or (6')) is used for theoretical derivations. On the other hand,

when (6) (or (6')) is implemented numerically, a finite piece of the signals

is used and therefore convergence of the iteration is guaranteed. The concep-

tual point is that for implementation purposes, the underlying model for the

distortion is g(m) = (h*JBf)(m), m C C where both B and C are finite. Then,

the pseudoinverse solution will always exist and can be approximated by means

of (6').

III.3 Papoulis-Gerchberg's iteration

£ Let us assume that g: F -> C is a piece of a 1-band-limited function

A*n
(i.e. g(w) = 0, w 0 12) where F 0 9 is an open subset of Rn. Let us suppose

that the complete function g satisfies the finite-energy constraint:

fRn lg(x)12dx < -.

Papoulis [21 and Gerchberg [3] proposed the following algorithm for com-

puting the continuation of g or its Fourier transform:

go = 0

gm = sinco*(JFg + (I-JF)gm- 1 )" m > 1 (8)

where sinc Q denotes the function whose Fourier transform is the indicator of

f2.

In ref. [2], equation (8) was shown to be convergent to g in the energy

norm for the one-dimensional case. In ref. [14], another approach was shown to

prove convergence of (8) which is also valid for the multi-dimensional case.



I II. 18

However, in [15], this algorithm was presented as a special case of

Landweber's iteration ([111). The underlying operator equation is (Af)(x)

g(x) where A is an integral operator given by

(Af)(x) f f(w)e-2n'iwxdw, x 6 F (9)
12

f C L2 (2) and 0 is assumed to be bounded. It is obvious that the sought solu-

A
tion is f = g and is also unique. We can now apply Theorem 2 to get a recur-

sion:

fo = 0o

fm = fm-I + aAt(g - ALM-1 ) (10)

where 0 < a < 2/(IlAtAll) and At is the adjoint integral operator given by

(Ath)(w) fFh(x)e 2n iwxdx w 6 11.

It is very easy to verify that IIAtAII j 1; then, a = 1 is an admissible

value and from (10)

f =0
ot

fm = fm-1 + A t (g - AfM-1) (10')

S will converge in the energy norm to the unique solution f of the equation

v v
(Af)(x) = g(i), x 6 F. But in that case, fm -> f also in the energy norm (V

m->

denol inverse Fourier transform). Since fn' f are supported on 2, fn(x) =f

V 12
f ( .)r-2ixwdw and f(x) f f(w)e dw, x G Rn. We now apply inverse

fl
tatisform to both sides of (10'):

fo = 0

V = 2
fm = fm-I + (f (g(x) - f f, (w)e- 72 rxwdw)e2lrzx.(i)' (11)

m F 1
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V

If we call Sm f., m2 0 we will obtain the recursion

o=O

" g= g-1 + sincn*(JFg - JFgm-1 )  (11')

Since gm-1 is 0-band-limited, equation (11') is equivalent to the following:

o=0

Sm = sincQe(JFg + (I-F) gm-1)' m 21 (12)

Equation (12) is the Papoulis-Gerchberg iteration (8).

We will now show a generalization of (8) to cases where the low-pass con-

volution is performed by some other operator.

A
To this end, we need to assume some further information related to g = f.

A

Let us suppose that for certain non-negative bounded function h(w), w 3 Q,

A
h(w) = 0. w 0 1, s satisfies:

* I8(w)12

f dw < (13)

Then, if we consider the operator A: L2 (Q) -> L2(F):

(As)(x) - fe I 2(W).e 2 niWXs(w)dw, x G F (14)

the equation g(x) = (As)(x), x C F will have a solution in L2 (0) (which is

obviously g/'i2). It readily follows that the solution is also unique. We can

now apply Theorem 2 to the equation g(x) = (As)(z), x 6 F for A given in (14)

to get an iterative procedure:

f = 0

fm = fm-i + aAt(g - Afro-1 ) , m > 1 (15)
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which converges to the unique solution. More specifically equation (15)

becomes

Sfo = 0

f M(w) = fm..(w) + aflI/2 (w)e2niwx(g(x) - fg/12(z)e-2 nixzf m -(z)dz)dx
F

If we now multipy both sides of (15') by g1/2(w)e-2niwy, integrate respect to

w C- 0, and call g M(y) =f fm(w)gl/2 (w)e-2 niwydw, we will obtain

so = 0

y 6 Rn, S3(y) g= ~y + a f If 9(w)e 2flV(x-y)dwJ(g(x) - gm...(x))dx (16)

'~ a

If we call h(z) fb sid(w)e 2nwz d, equation (16) will become

so = 0

o=0

gm= gi-1 + ah(-z)*JF(g - gm-i ) ' m > 1 (17)

which converges to g uniformly over compact sets in Rn, when 0 < a <

2/(SUpIA(w)I) and (13) is satisfied.

w

Two well-known discrete algorithms for extrapolation can be considered a

sampled version of equations (8) and (11') (see [16],[17]). In addition, some

new algorithms for solving the discrete extrapolation problem ([18]) can also

be interpreted as a sampled approximation of equation (17).

A

111.4 Iterative extrapolation of infinite-extent discrete signals.

Let F oe a finite subset of Zn and z(m), m 6 F a sequence of numbers.

The discrete band-limited extrapolation problem consists of finding an infin-

ite sequence y(m), m 6 Zn such that y(m) = z(m), m E F and y(m) is 0-band-

limited, i.e. y(w) =m - ny(m)e- 2 iw = 0 if w 0 0 (a fixed b3unded set of

m Zn Y(Mi
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frequencies 0 C [-1 ,1 ]
n (see [41.[16],[17],[18]).

The solution to this problem is non-unique (6,L4]). In ref. (4] it was

shown that the minimum-norm discrete extrapolation y can be computed by means

1g of the following two-step procedure:

1. solve for x: sinco(k-m)x(m) = z(k), k 6 F (18a)
m F

2. compute sinc(k-m)x(m) = y(k), k 6 Zn  (18b)
m EF

Then, it was shown that y can be computed by the following iterative algo-

rithm:

Yo = 0

k C Zn , YM(k) = ym_1(k) + a sinc0 (k-j)(z(j)-ym_(j)), m > 1 (19)
j eF

for 0 < a < 2. (Both results were extended for arbitrary multidimensional F

and Q in [18]; for a relationship between this discrete solution and the con-

tinuous extrapolation problem given in III.3, see [18].)

Perhaps, the earliest reference to the technique given by (18a)-(18b) is

Yao [19] who addressed this problem under a rather different name and by using

a quite general approach.

The fact that iteration (19) computes the same sequence as that of

(18a)-(18b) is very simple. In this section, we will show that the iteration

(19) can be obtained from Bialy's iteration for a certain operator equation

problem. The minimum norm property of the limit sequence will be readily

derived as a byproduct.

Let A: _> 1
2(F) be the following linear operator:
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(Af)(m) f f f(w)e21ifmwdw, m e F

It is clear that A is bounded when L2(0) and 1
2 (F) are equipped with the norms

flf(w)I2dw and y Iz(m)1 2 respectively. It is clear that the discrete extra-
a m e F
polation problem can be put in this equivalent way:

find f e L2 (g): (Af)(m) = z(m), m e F (20)

From Parseval's formula, it is seen that the minimum norm extrapolation

corresponds to minimizing 11f1 2 where f satisfies (20). We can now solve (20)

by means of Bialy's iteration. To this end, we need to compute At. It is sim-

ple to verify that, if s 6 12 (F) then

(Ats)(w) = s(m)e- 2 ,imw, w 6 [-1,1] n .
ma F

Thus, Bialy's iteration given by Theorem 2 becomes

f 0 = 0 (21)

fiM(w) = fm-l(w) + a E (z(k) - f fml(z)e2 nizkdz)e- 2 ikw, w C 12.
k C F Q2

4 and fm converges to the minimum norm solution of (20) in the L2 (0) norm.

Therefore, f fm(w)e2 iWkdw,k e Zn approaches the minimum norm f-band-limited

extrapolation y(k), k e Zn when m -) in the 12 (Z
n ) norm (Parseval's for-

mula). Then, if we call ym(k) fQfm(w)e 2nikwdwk e Zn, equation (21) becomes

Yo = 0

k E Zn, Ym(k) = Ym-l(k) + a sincf(k-j)(z(j)-ymi(j)), m > 1 (19)
j E F

and convergence to y(k), k 6 Zn is ensured for 0 < a < 2.

Ui
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p A final remark is in order. The operator A given by (20) satisfies R(A)

12(F) because F is finite, therefore iteration (21) or equivalently (19) will

always converge to the minimum-energy solution of the problem. This means that

ithe algorithm does not distinguish signal from noise.

111.5 Iterative extrapolation of periodic discrete signals.

Another related discrete approach to band-limited extrapolation is to

solve the following problem:

Given z(k), k = -k ° .... ko < N

Find y(k), -N < k < N:

y(k) = z(k), -k < k < ko

N
7- y(k)e- 2nikn/M = 0, I > k 0 (22)

k=-N

where M = 2N + 1.

In this case, the band-limited property of y(k), -N < k < N is given in terms
N

of the discrete Fourier transform (DFT): F y(k)e -2nik n /M .

k=-N

In ref. [51 the following iterative algorithm for computing the extrapo-

lation (22) was shown to be convergent:

Yo(k) = 0, -N < k < N

ffPn(k), -ko <, k <( ko

Yn = IDFT (23a)
C, otherwise

(z(k), -k < k < k

where 0n DFT (23b)

Yn(k), Ikl > ko
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(IDFr stands for the Inverse discrete Fourier transform given by

1/M N 2nkikn1/K, n
k-:N

It is clear that procedure (23) incorporates at every iteration the

information available In both time and frequency domains. In ref. [5], the

proof of the convergence of this recursion was done by means of a certain

nonexpansive property of &a operator in CH.

U

In this section, we show that (23) can be also considered a special case

of Bialy's theorem. Perhaps, this is the simplest of the examples presented in

this section because of the finite dimensional nature of the underlying Hil-

bert spaces.

Specifically, let A: C 2k0+ _> C 2o+ given by the IDFr operator:

(Ax)(n) = o '.y x(k)e27Tikn/n, .ko
k=-k

0

It is obvious that problem (22) can be restated as that of finding a vector x

2k0 +1
G C such that (Ax)(k) = z(k), -ko k ko. It is known that this system

of equations has a unique solution. We can apply Bialy's iteration (2) for

computing the solution x. So, we obtain

x (k) = 0, -ko < k Sko

nn = ne + a At(z z an-1), n 21 (24)

0

where a can be chosen as 1. (Here, At is transpose-conjugate of A.)

We now take M-length iT on both sides of (24) to obtain

=-0

So
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kYk) = Yn-l (k ) +  Z. 0" e2 n ih k /M  ko -2nihm/M zm-

1 0 m=k5(z (-)-YnX (m))
h -- 0 -N < k K N,

It is easy to verify that (25) can also be written in the following way.

Yo = 0

k

Yn(k) = Si Eo e2ihk/M N ee2 iI/M (Jk z + (I-Jk )Ynnl))(m) (26)
k=-k o  m=-N o 0

where Jk denotes truncation to [-ko,ko].
0

It turns out that recursion (26; is the same as (23a)-(23b) and there-

fore, the convergence of yn to the sought extrapolation is ensured.

In the derivation presented above it was assumed to simplify notation

£that the length of thi DFT is odd: 2N + 1.

The advantage of this approach to interpreting iteration (23) is that it

is possible to characterize the convergence of a similar procedure when the

3number of samples in the time and frequency domains is not the same. In such a

case, it is obvious that the extrapolation problem has no solutions or an

infinite number of solutions. In both cases, the corresponding equation (26)

will provide the minimum norm least squares extrapolation.
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IV. Extensions

In this section, we show that some extensions of the Bialy iteration can

be useful for obtaining new algorithms for signal restoration and extrapola-

tion.

In ref. [20], we presented the following iteration

fo

f n = fn-1 + DAt(g - Afn-1), n > 1, (27)

and we related it to the numerical continuation of analytic functions. Let us

assume that A: H1 -> H2 is a bounded linear operator, g C R(A) + R(A)l and D:

R(At) -> R(At) is a bounded linear symmetric operator which is assumed to be

one-to-one (i.e. Yx: Dx = 0 then x = 0) and such that DAtA is non-negative.

Under this assumption it can be easily shown that lim f = f where f is the
n-> n

minimum norm least squares solution of Af = g, if D is chosen so that IIDAtA1I

< 2.

In case A is compact, the condition DAtA is non-negative may be put in

terms of the eigenvectors of AtA. This case was extensively analyzed in [21].

The effects of different D's on the speed of convergence of iteration (27) was

also studied ([21]) for the compact case.

We will next show how iteration (27) can be used for obtaining some gen-a
eralizations of the Landweber-Papoulis-Gerchberg's algorithm discussed in Sec-

tion 111.3.

* To this end let us call A: L2(Q) -> L2 (F) the compact operator given in

Section 111.3

(Af)(x) = f f(w)e- 2 niwXdw, x E F (9)
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Since AtA is another linear non-negative compact operator there exists a fam-

ily of eigenvalue-eigenfunction (Xi,0i) i=1,.2 .... of AtA such that:

AtA n = )no, n=1,2 ...

(see [7]).

A sufficient condition on D for ensuring convergence of iteration (27) is

- the following (see [21]):

a. Do= n Pnn , n=1,2,...

b. pn satisfies 0 < PnXn < 2 for all n.

C. P., n=1,2,... is a bounded sequence.

It is interesting to remark that the operator AtA is given by the integral

kernel: sineF and therefore on, n=1,2,... are the prolate spheroidal wave

functions ([9]).

Many operators can be chosen to satisfy conditions a, b and c. In [21],

it was shown that it is sufficient to pick D = G(AtA) where G(W) is a polyno-

mial or rational function such that 0 < XG(W) < 2 for 0 < X < 1. If D is to be

so chosen, (27) will converge in the L2 (Q) norm to the solution of the problem

(Af)(x) = g(x), x 6 F, where g: Rn _> C is assumed to be a 12-band-limited

function. If we now apply inverse Fourier transform to both sides of (27) we

will get the following recursion

go = 0

gn(x) = gn- 1 (
X ) + fQ. e2 'wx D~fF e- "(g(z) - gnl(z))dz}(w)dw (2S)

Observe that when D = I, (28) becomes the Landweber Papoulis-Gerchberg algo-

rithm. Equation (28) shows a quite general version of this classical
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situation.r
In the remainder of this section, we will present some numerical simula-

tion results comparing the generalization (27) with the classical iteration

(10'). To this end, let us define

sin 7r/2 x2

g: R -> R: g(x) = n hi2 X) cos nX

U2_
The Fourier transform of this signal is plotted in Fig. 1. If we take the

interval F = (-1,1) as the known part of g, a fairly reasonable reconstruction

of the Fourier transform can be obtained by means of Discrete Fourier

Transform (DFT) of 129 samples. This result is plotted in Fig. 2. It is clear

that the two peaks are easily distinguished. Or -.e other hand, if F = (-1/2,

1/2) the situation will be completely different. Figure 3 plots the result

obtained for DFT of 129 samples in (-1/2, 1/2). This means that restricting

the known part to (-1/2, 1/2) represents an irretrievable loss for the appli-

cation of the naive inversion technique. In other words, by means of DFT of

samples of g on (-1/2, 1/2) the outstanding features of the spectrum of g are

lost. Therefore, we think that g: [-1/2, 1/21 -> R is a reasonable test exam-

* ple for our numerical simulations.

We first apply the Landweber-Papoulis-Gerchberg iteration. Figure 4a

shows the very poor result obtained after 20 iterations. Figure 4b plots the

* reconstructed Fourier transform after 500 iterations. In this case the

We now apply the more general procedure given by (27) for three different

D's.

1. D = (AtA + YI) -I
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For this operator (27) is closely related to the Twomey-Tikhonov regulariza-

tion method. In this case, iteration (27) becomes:

f =0

(AtA + yI)f n -fn-i + Atg, n > 1 (29)

It is worth pointing out that y should be chosen positive. In that case, AtA +

yI is always invertible.

Figure 5a shows the result obtained after 10 iterations when y = 0.00005,

and Figure 5b plots the reconstructed Fourier transform after 20 iterations

with the same parameter y. In both cases the reconstructions are of good qual-

ity.

Fixing a value for y and determining the number of iteratons are by no

means trivial matters. By comparing Figures 5a and 5b it ii seen that the

reconstruction is quite sensitive to the number of iteiations d es. We think

that the sensitivity depends also on the parameter y.

3 Figure 6a shows the result after 10 iterations obtained by applying (29)

when y = 0.005. Figure 6b plots the corresponding result for y = 0.005 and 50

iterations. By comparing Figures 5a and 6a it is seen that the reconstruction

is very sensitive to the parameter y when the number of iterations is fixed.

Figure 7 shows the reconstruction obtained for y = 0.000005 after 10

iterations. It is clear that for a fixed number of iterations the smaller the

parameter y is, the more distorted (due to the propagation of round-off

errors) the reconstruction will be.

In spite of some unanswered questions, the main conclusion that can t

drawn trom these examples is that the resolution obtained ir Figares 5,, :
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6a and 7 is much better than that of Figures 4a and 4b.

2. D - F(AA) and FM~ 804.375X6 -3003).5 + 4504.5X4~ 3465.%3 + 1443.75.%2
-315). + 31.5

Some reasons for choosing such a D are well documented In (21). We think

that this example is also useful to realize that the reconstruction is very

sensitive to the choice of D. For this D. Figure 8a shows the result after 10

iterations. It is seen that the resolution Is poor. However, Figure 8b plots

the reconstructed Fourier transform for 200 iterations which is a good result.

This means that the procedure is slower compared to those given where D AA

+ I 1

It is also remarkable that by using a fewer number of iterations than

those necessary for the classical Landweber-Papoulis-Gerchberg algorithm

recursion (27) provides a better reconstruction (compare Figures 4b and 8b).

3. D F(AA) and FM) X 1

This case is intended to be an example where the speed of the reconstruc-

tion seems to be similar to that of the classical approach (9)-(10').

4 Figure 9a shows the reconstruction obtained after 500 iterations. By com-

paring 9a * and 4b is is seen that the results look much the same. Figure 9b

plots the result obtained after 1,000 iterations. By comparing 9b with 9a it

is noticeable that the reconstruction of the Fourier transform was improved at

the cost of double computational effort.

It was assumed, so far, that the given signal is not contaminated with

any noise. Since the techniques presented in 1 and 2 above represent a sub-

stantial improvement of the classical iteration procedure (8)-(10') it is
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expected that the noise will also propagate much faster in the reconstruction.

3Therefore, a stopping rule is of great importance for practical applications.

. It is also important to analyze what is the performance of the iteration when

the known range of g is smaller. Some related examples and further analyses

1 are given in [23].
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CONTINUATION TECHNIQUES FOR A
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ABSTRACT

This paper deals with the numerical continuation problem of analytic functions

g(z) given by g(z) f Kz,t) f(t) dt where K defines a bounded operator on

2 
C

I L ((I). It is assumed that g is known over a finite segment A of the real line

where g is to be sampled. Our continuation techniques emerged partly from

a generalization of the Landweber iteration. We show that a certain discrete

approximation of the proposed iterative technique yields two-step (non-

iterative) algorithms for solving the continuaticn problem. We also prcve

convergence of these approximations to the sought function g. Special
~-2 tizt

emphasis on the continuation problem for the case K(z,t) = e is given

and some related numerical examoles are presented. The continuation problem

when the known part of g(z) is contaminated with some noise is addressed and

some techniques for solving this problem are also provided.

1



I. INTRODUCTION

Let us suppose that we are given a piece of a n-dimensional signal

g(t), t r A C1in. In addition, we assume that g is obtained from some

other signal f(x), x QC1* through a linear space variant system,
U

g(t) fK(tx) f(x) dx t cEn , (1)

a where K is known. 'The goal is to recover the "real" object f(x), x l,

from a finite set of samples of the "observed" signal g(t), when t e A.

This problem is very well known in the engineering literature ((1]) and it

has been extensively studied in the mathematical literature ((2]).

A very important case is obtained from (1) when K(t,x) - k(t-x),

t,x QKin. In that case, g and f will satisfy the following relationship:

AA n
g k(W) • Tf(&) , (We)

where A denotes the Fourier transform and TF(x) - f(x) if x6c, and 0I
elsewhere. It is clear that

A A

( TF(w) , for all Wo: k(w) # 0

A
Let us assume that k(u4) 0 0 for uo C N, where N contains a non-void open set

A
of Rn. Since TF has compact support (if 0 is compact) then TF is analytic;

so the knowledge of TF(w), when u N, will be enough to determine TF()

n nfor any other uwetR. In many applications, TF(-), uER will describe

by itself all the information that we need from TF. If this is not the
A

case, then we should proceed to compute Tf from Tf(uj), w E R. However,
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A
we have assumed, so far, that g(W) is known exactly for all CJ1Gn. This

will not be the case if g(t) is observed on the set A 0 En, or on a finite

subset of A only. This shows that if we can improve our knowledge of g

(i.e., to know g(t), when t * A) we will obtain a better knowledge of g

(i.e., to compute g(W) more accurately).

A
In many cases, k(w) - 0 if uj N, where N is assumed to be compact.

A
Therefore g (W) - 0, i I N, which assures that g will also be an analytic

Ua function. This means that the set of values g(t), t G A will determine

g(t), t q A. This shows that the solution f to the equation

g(z) - fk(z-x) f(x) dx

can be approached by solving a continuation problem for two analytic func-

A
tions: g(z), given z G A, and TF(w), given U GN. It is important to notice

A
that the continuation of TF can be stated in the sense of equation (1)

since

A C-2rixw
TF () f e f(x) dx

-2ixwu
and e plays the role of K(wx). This latter continuation problem

shows an example of the importance of including space-variant Kernels in our

discussion.

One motivation for the continuation problem we give above is the

restoration of f. However, there is another motivation: In many cases, we

are interested in obtaining knowledge of g(x), when x 0 A, and x is "close"

to A. Some examples of this situation are known, in multidimensional signal

aI

0
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processing. Let us suppose we apply a filter to a given image. The filter

U ideally performs over an infinite extent image. However, in practice we are

given only a piece of the image. When the filter is applied to points close

to or on the border of the real image, inaccuracies will result, if we assume

Usome arbitrary numbers for the unknown values of the image (e.g., the image

is assumed to be periodic; or a constant number is assumed for the unknown

values). The filter would improve its performance if we could fill out the

- unknown values of the image with some interpolated information. Thus,

small amounts of extrapolation (i.e., to extrapolate a small region beyond

the boundary of A) can be of great help.

In the following sections we concern ourselves with the continuation

of the function g, when g is given by the equation

g(z) - K(z,t) f(t) dt, z e n (1)

and g(z) is known for z C A c n.

One possible approach for getting a continuation of g is to solve

equation (1) in terms of f and to use the same formula (1) to obtain the

continuation of g. We will use the Landweber-Strand ([3],(4]) iterative

procedure to get the solution of equation (1):

f - initial approximation,O

f n-i + D K (g -K:n I) (2)

where K denotes the adjoint of K and D is a certain operator ([4]). iT.

section II, we will extend (2) to cases where K is not comact and D is an:
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suitable positive operator, including Strand's iteration (4]) as a special

case. If we apply K to both sides of equation (2) we will get

gn " gn-1 + K D K (g - gn-1 ) (3)

go initial guess ,

where gn a Kfn is a function defined on the whole R n .

Under rather general conditions for K and f, recursion (2) is mown to

be convergent. On the other hand, we will also prove that the sequence gn

napproaches g uniformly over compact sets in C . Practical computation of gn

requires equation (3) to be sampled; this means that discretizatio= of gno g
q*

and KDK are unavoidable. In this paper, we will show that certain Zatural

discretization provides an iterative procedure which is also convergent to a

sequence. This sequence can also be obtained by solving a system of equations

where D plays an essential role. This system of equations provides a natural

interpolation for the sequence by means of an analytic function. -.e will

also prove that this analytic function approaches g uniformly over compact

sets when the distance between samples of g on A tends to zero.

Thus, we will obtain a reliable technique for continuating g(z), because

the closer the samples of g are taken on A, the better the approxi=ation

to g(z), when z t-A. It turns out that our continuation technique does

*not require the computation of the derivatives of g. Section IV %¢hich con-

tains the main results is derived independently of Landweber-Stran' s iteration.

However, Landweber-Strand's iteration is the origin of the main ideas developed

in this paper and therefore, section ii is fully devoted to this i-er-tive

procedure and our generalization. Section III shows the relationships betw:een

. . . . . .. 4-". ...
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Landweber-Strand's iteration and our continuation techniques, which are

3presented in Section IV. Section V includes some numerical examples for the

case K(x,y) - e In section VI we present the continuation problem

* for the case in which the observations are given by 9(x) - g(x) + n(x), x 6 A.

1 Here, I denotes a continuous perturbation such that I7(x)14 C for some 6>0.

All our results are presented for the one-dimensional case. However, exten-

sions to the multidimensional case readily follow.

II. LANDWEBER-STRAND'S ITERATION

In this section we present Strand's iteration in a more general setting
2 22

than that of [4]. Let K : (22) -L 2(A) be a bounded linear operator. Let

g 6 L 2(A) be a function such that g - g1 + g2 ' where g, 6 R(K) and g2 6 R(K)I

O (R(K) denotes the range of K). In addition, let D : R(K ) -- R(K ) be a

bounded linear symmetric operator which is assumed to be one-to-one (Vx Dx = 0,

then x = 0), and such that DK K is non-negative.

U
Theorem 1

Under the conditions stated above, let f be defined as followsn

fn = fn-I +c(DK* (g - Kfn-1 )

f - any initial guess r L C.) (4)
o

Let us suppose that 0°( DK KI . Then, f converges to (I - P)f + f+,n o
.+

where f is the minimum norm least squares solution of Kf = g, P is the

orthogonal projection on \(K)' = v 9 L2(a) : Kv 0 'and I denotes the

identity.



111.6

Proof

This theorem is a simple consequence of a general result (Bialy [5])

, for bounded operators on Hilbert spaces. Let us recall that our assumption

g C R(K) + R(K) ensures that the problem Kf - g has a least squares solu-

tion ([6]). It is also known that the set of least squares solutions is

-x : K*Kx - K g). This means that we need to pick up the minimum norm solu-

tion for the'operator equation

K Kx - Kg (5)

Since D is supposed to be one-to-one, equation (5) is equivalent to

DK Kx DK g - g' (6)

Since DK K - H is a symmetric bounded linear and non-negative operator,

Bialy's conditions (5] are satisfied and therefore the iteration

fn = gn-i + C(g,- Hfn-1) (7)

f - any initial approximation0

2 + +converges in the L (CI) norm to (I - P)f + f , where f is the minim,,m norm0

solution for the consistent equation ILx - g, provided that 0 / X4 I 2U151).11 H R~

It is also clear that (7) becomes

f n = fn-I + DK (g -Kfn- 1 )

We can include the relaxation parameter into D. In that case, convergence

* of (4) is ensured if IODK *KI 4 2. Strand ([4]) considers equation (4) for

some special D and assuming K to be a completely continuous operator. If
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the latter condition is satisfied then the singular value theory for compact

operators will apply to our problem. In that case, if O denotes the family

of eigenfunctions of K K, for n : 1, 2, ... , and n its corresponding

eigenvalues:

K K n - 1, 2,

Strand's conditions on D become

r n - 1, 2, s (8a)

where p nsatisfies

nn 0 4 p n 'A n 2 for all n, (8b)

Pn n = 1, 2, ... is bounded (8c)

It turns out that condition (8a) ensures that DK K is non-negative. It is

also clear that (8b) is equivalent to IIDK* K 14 2, and condition (8c) ensures

that D is a bounded operator on R-- * K). These conditions allow for a partial

study relating D to the behavior of the approximation (4) after n iterations.

Under the more general situation stated in theorem 1, some rational

expressions in K K may play the role of D. Similar analyses to those of

[4] are expected for this situation. However, this goes beyond the scope

of this paper. In what follows, we will restrict our attention to cases in

which K defines a bounded integral operator.
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III. APPLICATIONS TO THE CONTINUATION PROBLEM

We remarked in the introduction that the iterative procedure (2) can

be used for getting the continuation of certain analytic functions given by

the formula

g(z) = fKz,t) f(t) dt zG3

where K defines a bounded operator: L 2(C -L 2(A) and g is observed on the

set A. It is clear that if we define g. Kfn , where f is given by (2),
n n' n

we will obtain the recursion

gn M gn-1 + KDK (g -g 1 )

go M 0 - Kfo, fo M 0 (9)

Since f converges to f+ where f+ is the minimum norm solution of the equationn

g(z) = fK(z,t) f(t) , z FA

and since the convergence is in L2 (C), then gn converges to g in L 2(A). We

now state the following result:

Corollary

Let us suppose that K satisfies these additional properties:

(1) fK(zt) h(t) dt defines an analytic function for z E C and any

h E L2 ( ).

(2) sup / K(z,t) 2 dt C c o for all compact sets T C C.

z~I C
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* Then, the sequence gn given by (9) converges uniformly over compact sets in

3 C to the continuation of g(x), x E A for complex arguments z 6 C.

Proof

Since gn = Kfn is also an analytic function over the complex plane,

and f - f L2 (C) we have by means of the Schwartz inequality:n

- g()I ~ j- f12  [fKzt1 dt iC

for G arbitrarily small, n > n (S) and r a compact set in C.0

Some particular operators allow a bound (as the type of that given by

(2) in the Corollary) which depends only on

sup [Imzlm zer

In that case, convergence is assured to be uniform over the real line. This

-2Wiz tis the situation for K(z,t) = e Some consequences of this Corollary

Kin signal processing are given in (7].

Realistic applications of this iterative continuation formula involve

discretization of g, gn and the operator KDK . Applying naive quadratures

formulas for the integral K (g - gn-l) we will obtain the following recursion:

for any k G Z:

S (KA) = Sn(k&) +C(E [KDK(iL,.)] (kA).(g(i&) (iL)) (10)
n n- i=-N (k)('i)-n-1

K(x,y) is the complex conjugate of K(x,y) and the dot in K(iA,') indicates
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the variable with respect to which D is being applied on K; & is a positive
number used to sample 2N + 1 times the function g on (-a,a) • 2a and o(

2N+l

is a relaxation factor independent of n. It would be desirable that

S-n(k&) - gn(k) ; however it is obvious that the sequence Sn(k&), k 9 is

not obtained by sampling g n" Two problems arise from the discrete recursion

(10). The first is related to the convergence of the sequence S when n-,C.n

The second problem is about the relationship between this discrete technique

and the original continuation problem. More specifically, the quewtion is whether

limr Sn (k)

-A will approach g when A-w0. Both problems are addressed in the next section.

IV. ALGORITHMS FOR THE CONTINUATION PROBLEM

In what follows, we will assume that K(x,.) 6 L2 (CI) for all x A,

D = D is positive definite, and defined over the whole L 2(A). Under

these conditions the discrete recursion (10) will be derived by means of a

rather different approach. Let us consider the following matrix L

4 L : ij' -N 4i,j j N.

X - (KD (i&,) )(j (1)

It is simple to prove that L is a hermitian matrix, i.e. Z = .. for all

i,J. If we assume that K has the following additional property:

i- c.K(il,x) = 0, for all x - c. = 0 , i - -N ... , N

(12)

I!
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then L will be positive definite (without condition (12) L is non-negative).

This shows that the system of equations

- Lc d

2N+1
will always have a unique solution for any d G C + . In particular, we can

find li i - -N, ..., N that satisfy

N
. - (j . (i&) (Kf)(i&), -N . i N (13)

SJ-N

It is also worth pointing out that after '. is found in (13) we will have a

natural interpol.ation formula for g(it), by means of an analytic function,

i.e.,
N

gA(z) - j - (KD K(j&,) )(z) (14)

Let us show how this approach relates to recursion (10). Since L is a posi-

tive definite matrix, then% ., -N 4 J t N can be obtained by means of the

* following well-known iterative procedure:

Y(n) = in-) + 0 (g(i ) - L'-l) (15)

i i

CX a certain positive relaxation parameter and

=- 1 . (n) for all i E [-N,N].
2. i
n -c

We now apply &(KD 7(i&,') )(k), kr Z , to both sides of formula (15) to get

N N
L (K K(il-,) )(kL).n " ( K(iL,) )(k.L -)

i-N i=-N

N
+ i'Z (KD K(i,' (kA).(g (i) -L (16)i=-N
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If we call

Sn(k) I(n ) - (KDK (iA,') (k&) , k C-:.,n k
im-N

equation (16) will become

N

s (k&) - S 1 (kA) +,AK (Ic'D(i&,) )(k&).(g(iA) - Sn (i&))

Since '(n). when n--., then SU(kh) converges when n--. and k is fixed.

Moreover, we have proved that

lir Sn(k&) = g6(kA), for all kGZ.

We have shown, so far, that sampling iteration (g) produces a point-

wise convergent sequence which can be computed by an exact technique. This

procedure consists of two steps. We first solve a system of linear equations

(13), obtaining Y'(1 i - -N, ..., N; then, we use ti to get an analytic

function gA(z), z G C which interpolates the set of samples g(iA), i - -N,...,N,

where iA E A for all i 6 [-N,N]. This function is given by equation (14):

N
g g(z) - A N (KD K(J ,') )(z).1

The remainder of this section is devoted to showing the relationship between

g I(z) and g(z). We will need some lemmas.

Lemma 1

nLet (hM ) be a family of analytic functions over C and let us assume

that (hm) is uniformly bounded over compact subsets of C n (i.e., for all

i,
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compact sets r. Cn there exists a constant c : sup Ih(z) t c for all m).U z

Under these conditions there exists a sequence h , k-.o and certain analytic

function h such that h converges to h uniformly over compact subsets of Cn.

p
For a proof of this well-known result see, for instance, (8]. In what fol-

I 2alows, we will show that g , - - -- satisfy the hypothesis of lemma 1,

when D and f satisfy some additional conditions. We will also need another

previous result from the optimization theory in Hilbert spaces.

Lemma 2

Let (H, <,> ) be a Hilbert space. Let xi , -N - i N be 2N+l linear

independent elements of H and ci, -N 4 i N be 2N+l complex numbers. Then,

the following optimization problem:

minimize 4x,x > (17a)

subject to x 6 H

4x,xi>= c., -N i N (17b)

is uniquely solved by

* N

x 0 N X.(18)
i=-N 1

where i are determined by solving the system of equations:

N
_ B(xi,xj> = c. , -N L j 4 N (19)

For a proof of this le-ma see, for instance, [9]. :'e are now able to prove
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Theorem 2

Let us suppose that D satisfies: there exists m > 0 : <x,Dx> > m4,x>

2
for all x 6 L , and assume that there exists a function . -L2 such that DE - f.

In that case, the family of analytic functions 1; 2a given by formulas2N~l

(13) and (14) is uniformly bounded over compact subsets in C.

Proof

We will use lemma 2 where x i =A0f(il,) and ci g(iA), -4 ie N.

2
The underlying Hilbert space is L (a equipped with

cy>s " fx() Fy(M) da.
.0

Under these conditions, the optimization problem (17a) becomes

minimize .fh(w)(Dh)(u) dw (20a)

2
subject to h - L 2

for -N i N (20b)

It turns out that the solution to that problem is

~ ()- (± , ) , (21)
i-N

where satisfies

N
A.Z A.<KQA, ) , K u'i >s g(iA) ,-N i4N (22)

- S
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By definition of .<, condition (22) becomes

- :N
S~(KD 7(jA (~ g(i&) -N !i £ X '

-- N

This last system of equations coincides with (13) and therefore, -

-N 4 j ! N. It is also important to notice that g can be written as follows

g (z) - Af °(uj) D K(z,-) (w) dw (23)

where' 0 is the optimum given by equation (21). Since DC f, for certain

G L2 , the function -.e is a feasible point for the optimization prob-

lem, that is to say, -.e satisfies condition (20b). Hence,

f 0(W) D 0 () dw u - 7 ) (a) du (24)

because is the "minimun-norm" function among those which satisfy (20b).

Now, the sought property of the family g, readily follows from (23) and (24).

IFrom (23) we obtain

g (z) 14 .i°0[ .D K(z,) i2 (25)
2' 2

Using equation (24), and the assumptions made on D and K, (25) becomes

I g(z jff (w) De(w) dw) 1IDt 2 ( IK(z,t)L d t) 1'. ' (25')lt2 m

If we now assume that zEr a compact set in C, equation (25') becomes

Ig&(z) cr for all z EI ,

where c depends only on P.
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We are now able to apply Lemma 1 to obtain

Theorem 3

Let

2a
.-.-- g ) - J . " K(i&,))(z), z , 2N+l

be the analytic function obtained with the condition

N
-N £ N :11 A -i(j,) )i - g (WA (lKf)(A) (13)

jm-N

Let us assume that D and K satisfy all the conditions stated in Theorem 2.

In that case, there exists a subsequence A&-- 0 where m- such that g.
mm

approaches g uniformly over compact sets in C.

Proof

By lemma 1, there exists asubsequence &m-W 0 and an analytic function

h(z), such that g approaches h uniformly over compact sets inC. in

addition, h - g because g is a family of equicontinuous functions (a simple

consequence of the uniform boundness) and therefore, since g (i&) =g(i

when -[2a/& I ini ,2a/d ] and the set of numbers iA : 04 m .c9,

-[2a/ ] ± [2a/&m ] is dense in (-a,a) we conclude h(z) - g(z) for

z E (-a,a). Since both functions are analytic, the same identity holds for

z C

We would like to remark on some important points and to give some

examples before ending this section.

e
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The property that DK K is positive was not used in the proof of Theorem 3.

U On the contrary, this property is required for the recursive computation of f

by means of formula (2). It is worth pointing out that we have used, so far,

equally spaced samples of g(iA) where A - 2a
2N+1 However, similar results

1 to those of theorem 2 and theorem 3, and different formulas for interpolating

samples (as (14)) can be obtained for non-equally spaced samples and for

other regular distributions. It is also easy to see that we could have used

- the following sampling sets:

1 0O4. k 4co -Nk-4 ~iN -4 N 2a~
'k kk &Nk 2Nk+1

*" where Nk is a non-decreasing infinite sequence of natural numbers. In that

case, by means of theorem 3 we would obtain a subsequence of Nk , k = 1, 2, ... ,

say E n , n = 1, 2, ..., such that g approaches g uniformly over compact sets

in the complex plane. If we repeat this procedure for every non-decreasing

infinite sequence of natural numbers we will conclude the convergence of
2a

g, to g, where A. = 2N+l - and N is any natural number. This observation

is important because it means that our approximation to g over a compact set,

by means of g will be good for all N >N if it is good for N . This obser-

vation also applies to more general sequences of sampling sets.

We now give some specific examples of operators which may play the role

of D in the continuation technique. Probably the simplest case is D = I, the

identitY operator. In that case, the interpolation formula (14) becomes

N _

g (z) = 1 KkK(J,")J (z) Y (26)
S ~j=-N

I
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where Y are chosen to satisfy g&(iW s(id), i - -N, ... , N. Another

example is D - (K K +0(I) - , where oC is a real positive number. More gen-

erally, if P denotes the .polynomial

k = a i , where a i  0 , a, >0

1-0

then D - PkK K) will satisfy all the conditions required by theorem 3 and

so does D-I. The examples given above satisfy R(D) - L2 (. This property

2
ensures that f 6 R(D) for any f C L (n) whatsoever. In particular if f is

such that Kf - g, we will have f 6 R(D). Hence, no relationships between f

and D are needed to apply theorem 3. Unfortunately, this is not always the

case. The other property which D is required to satisfy is

0 Dx,x>m/x,x> for l 2( (27)

This assumption is by no means mild. Simple positive operators may not have

this property. For example, let us define

2 2 A
D : L (O) -- L (Q) : (D )(u) h(&). (u) (28)

A
where h is a bounded, real and positive function. Even if f r R(D), that is

* to say

2 (28')

* D may not satisfy (27) and therefore, the hypotheses of theorem 3 may not be

satisfied. However, the thesis of that theorem still holds. To show that,

let us assume

If - da (29)

h
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which is, in fact, a weaker condition than (28). Then, the analytic function

5g can be written as

- f f 2

h h

where D L2 ()- L2 (C): (D a)() ()). We now call H KD"

and we apply theorem 3 when K is replaced by H (notice that H is an integral

operator) and when no D is present (i.e., D = I). We obtain the interpolation

(26): N

9 (z) & F H go&, (z)
& j=-N

or equivalently

N

g (z) = AQK(j&,') (z) (30)
j=-N

which is the formula we should obtain in theorem 3 applied to this situation.

The great flexibility in choosing D shown in theorem 3 may be useful

in two different ways:

1. Some more a priori information about g (or f) may suggest picking

up some D's to get closer interpolation formulas. The numerical

evidence of the next section gives an example about this situation.

2. The noise problem. When g is contaminated with some noise, the

effect of D may be of great importance, especially when the system

of equations (13) is solved iteratively. This has been shown to be

the case when we deal with the iterative procedure (_-) for ccmputin

f (see [i]). Some numerical properties of related techniq'-ces fcr

solving the problem in the presence of noise w;ere recent"v repor:e

in [13] when K(x,t) = e

To finish thi5 section we would like to ooint out that another
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interesting question remains unanswered: What are the additional conditions

that f and D should satisfy to get an approximation result such as that of

theorem 3 when D is any positive-definite linear operator?

IV. NUMERICAL EXAMPLES AND DISCUSSION

We will consider in this section some numerical examples for the case

K(z,t) - e 2liZt. The special interest in this particular operator is well

known and we tried to explain some of the reasons in Section I.

In this situation, interpolation formula (14) becomes

N e2Trizx rij

g (Z) Y fe2i D(e ~)dx (31)
j -NJ

The case D - I was addressed in [12]. However, in ref. [12] it was also

assumed that g 6 R(K K) to derive the corresponding interpolation formula

and no relationships between g and g were shown. On the contrary, we do not

need any further restriction on g than g r R(K), that is to say,

g(z) - f(t) e2fzt dt, z EA

and since the kernel satisfies all the properties required by theorem 3 we

also know that g - g uniformly over compact s.ts. In ref. (10] it was

shown that for this particular situation the convergence of g to g is uniform

over the whole real line.

If we assume that D is given by (28) and if df£ 4 co where
A AA

h : R -R is bounded and h(w) - 0 if w i, then we can apply formula (30)

to obtain:
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N

In this situation, the system of equations we need to solve to compute Z.,

j =-N, ... , N has the following form

N
gi) Z i hC(i-j)A) (33)

J=-N

It turns out that the matrix involved in (33) is Toeplitz and therefore,

0((2N + 1) 2) algorithms can be used for solving the system. We have developed

an iterative approach for solving (33) whose relaxation parameter does not

depend on the number of points inside A (for L fixed), when A is varying

([111).

Our numerical experience will be based on the following functions:

2

....) =COSi11z , zC

sin 2T(z- ) sin 21T(z+;!)g2 (z) -- (z- ) + 1T(z01) , C

2(sinZ) z2

g3 (z) IT z) , z e C

:t is clear that these functions are analytic and they can be written as

f(x) e - 2 1 i zx dx
I

with f E L'(I and Cl= (-l, 1). The interval (-0.3, 0.5) is assumed4 as h
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set of known values. We will take 33 equally spaced samples in (-0.5, 0.5)

with A - L , for each case. The continuation will be given by means of

65 equally spaced samples of g (z) taken in (-1, 1), corresponding to the

points z - 1&, (-32, 32].

In the first case, g1 (z) is given by' the integral

f 0.5 
f l (  2iciz dw

where f is drawn in figure l.a. The set of 33 samples of gl is given in table

l.a. Figure l.b shows the function g1 in (-1,1). These samples provide a very

I poor description of the spectrum of g(x), x 6 R, because their discrete Fourier

transform (DFT) does not distinguish the corresponding pair of peaks. The DFT

is shown in table l.b and in figure 2.2. Compare this with the DFT obtained

when the 33 samples are taken in (-1,1) (fig. 2.b). In this case we have

chosen D = I and therefore, g is given by (32) with

h W sin 2 Tx
rrX

Table l.c shows the values of the continuation g(1)(i), 32 *A/'ij >/ 17,

- i. *Table l.d shows the real values gl(i), 32 >/ [li > 17. It is
33 1

seen that the continuation is of good quality. We now compute the DFT of

the sequence defined by the given samples g1 (iA), 0 - lit 4 16 plus the

continuation samples g (in), 32 > lit >, 17. The result is given in table
* &

1.3. Notice that the two peaks are now distinguished very clearly. This

example shows the importance and effectiveness of the continuation procedure.

The second case is intended to be an example of the effectiveness of

the algorithm when the main peaks of the function to be continuated are not

completely included into the known range (fig. 3). In this example, we use

61
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D = K K + -I, where - 0.5. The function obtained by means of the formula

KD(K(x,'))(z) can be written in this case as

0 0.5f"sinc (z-y) sinc (y-x) dy + 0.5 sinc (z-x) (34)
-0.5 1.0 1.0 1.0

gwhere

sinc 0 (w) = sin 21rw

-The function obtained by the continuation procedure is sampled, giving

g(2)(i2), 32 > >il > 17.(table 2.b). The values of the known samples of

g2 are listed in table 2.a, and the real values g2(i& , 32 >/Iil > 17 are

given in table 2.c. The conclusion that can be drawn by comparing tables 2.b

and 2.c is that the continuation procedure performs a fairly reasonable

extrapolation. It is worth noticing the accuracy obtained at the main peaks.

However, these peaks are still close to the known range of the given function.

Further. numerical evidence is necessary when the location of the peaks is

umore critical.
The third case is to provide a rough comparison of the performance of

two different D's. The function g3 (fig. 4) is to be continuated from its samples:

3 (iL), 0 ! Ilil 16 by means of D1 = sinc 1 .0(x-y) and D, given by (34).

Table 3.a shows the known samples. Tables 3.b and 3.c list the values of

both continuations. Table 3.d contains the real values of g3 taken on the

same points at which the continuations are sampled. it is seen that the

continuation provided by D2 is closer to g3 than that of D on most c= the

sample points. This phenomenon is not yet fully explained.

Probably the main conclusion that may be drawn frcm these examples is

I
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that 33 samples of the given function was always enough to get a quite reason-

able continuation. It goes without saying that this result is due to some

peculiar properties of the given functions gl, g2 and g3 ' in terms of the

chosen D's. A deeper study of these properties might shed more light

on the role played by D in the continuation technique.

"iV. CONTINUATION AND NOISE

We have assumed, so far, that our samples of g, taken on A, are not

contaminated with any noise. However, a more realistic model should consider

that the given observations are "(x), x G A, where j - g + 1. It is clear

that g and I cannot be separated. In general, I is not a smooth noise and

therefore, we need to change the formulation of the continuation problem

because g is not a piece of some analytic function. We will assume that

: A -C is a continuous function which satisfies )(x)1 4 - , for all x 6 A,

where G is some known constant. Under these assumptions, we could seek for

a function h(z) which is given by IJK(z,t) s(t) dt, for all z 6 C, s S L2(

and such that I (x) - h(x) I f , for all x E A. It is obvious that this

problem has a solution. However it may not be unique and therefore, h will

be different from g. This means that in the absence of any other a priori

information about g, the continuation of g from " becomes a d&.cate matter.

Among the infinitely many functions which may play the role of h

(i.e., which satisfy the two conditions stated above), we may put some addi-

tional constraint to th@ problem to guarantee a unique solution: h for all

6 > 0. The only restriction we should impose to the additional constraint
(
(in the absence of some more a priori information about g) is that the

I
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solution h approaches (in some convenient way) the true function g when

tends to zero. This convergence must involve the values of g oeyond A.

In this section, we develop a technique which will use the following three

constraints:

h6 (z) " fGe(t) K(t,z) dt , z E C (35a)

he(x) - (x)j4E , for allxr=A (35b)

s- L 2 minimizes <s,s>D = fs(t)(Ds)(t) dt
f. =(35c)

among those which satisfy (35a) and (35b)

In formula (35c), D denotes a linear, bounded operator which satisfies

*'Dx,x> > m<xx> for all x, with m > 0. We will give a procedure to compute

h and we will show that hG approaches g uniformly over compact sets in the

complex plane when g(z) = fK(z,t) f(t) dt, z G C and Dt = f for some LE L 2(.

Theorem 4

3 Let K be an integral operator satisfying the properties stated in

theorems 2 and 3. Let D, i and g be as defined above, and let us assume that

f = De for a certain L 2 If we take = 2a for all N > 1, and if
N + o l N>,adi

we define

N
h (z) N . KD Q(jI,) (z) , z E C (36)

where X., j = -N, ... , N is the optimum of the following problem:J

N
minimize Z Y" j (37a)

subject to:
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&~ 1~Ki~) (AR -~. -N iA N (37b)
N

Then, there exists a subsequence h hkk approaches h. uniformly over

compact sets in Ohe complex plane, where h. is defined by conditioni (35a),

(35b) and (35c).

Proof

We will follow the same ideas as those of theorem 3. It is clear that

* h is well-defined because condition (35b) defines a closed convex subset

of L2 (CD. It is also clear that h is well-defined and that condition (37c)

can be rewritten as

-N i- N : lAiN (i - g(iA")I

It is also possible to rewrite

i-N

as follows:

.N N N

-K (j AN,,e D( D (k(k )) (t) d t

4 J -- N k--NN N
't ~K( t) . D4)>~~ , 1))Wd

N-N D

E Y m E Y I4. .
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and therefore, the optimization problem can be restated by using lemma 2

as follows

minimize 4s,s> (38a)
D

subject to

s ~2  -Ni~ ,14s,&Ki~ N)D -g(iA) ~~ (38b)

It is also important to notice that h can be wirtten in the following way:

hN (z) 1 A (t) * D[K(z,-)] (t) dt (39)

where SN is the optimum solution to the problem (38a), (38b) which is given
N

by the formula

* ~S11t) 'J N K(jt , t---N
U j=-N

By means of (39), we obtain

h&(z I t {DK7z
hN (SN12 ( 2 (40)

Since f - De, L then f-A also satisfies condition (38b). From

(40) and the other properties assumed for D and K we conclude

d * t D [2 " D -It C,N m

where

C = sup ( f K(z,t)L2 dt) a co-, . t set in C.
z~.

We now apply le,=a I to the sequence h , N 0 to get an analytic -" -- i-r



111.28

8 which is a uniform limit on compact sets of a certain subsequence ha4 ,

Pj Nk
k) O. It is clear that ggsatisfies -is(x) -8(x)(16 for all xf-A

2a Ii
because h& is an equicontinuous fsmily. I ii. -N -4 i . N. A i a

dense subset of A and is continuous. Therefore S. satisfies (35b).

Since

ha (Z) h A~~(t).D[Z(z-)] (t) dtg

and

". then

8=(z) - f(DS!)(t) K(z,t) dt

*where S* is the weak limit in L(M) of a certain subsequence of kNk Nk
This means that satisfies equation (35a).

Since Si i a weak limit of &;mSm, k >) 0, m~ a subsequence of N
is kk

then

jS~~(t) dIk~ k k (1

In addition, by definition ofS,

f& fs;( S(t) dt 4 fS.(t) DS -(t) dt ,for all N >,,0.

and by (41) we obtain

&Z(t) DS(W dt 4 fSe(t) DS,(t) d (42)

I OBy (42) and (35c) we conclude
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J Sa(t) DSZ(t) dt - f SeCt) DS,(t) dt

Since Sa satisfies condition (35b) then we have

S - S. a.e. in 2.|E

Hence, h,(z) - g,(z) for all z and therefore he is given as the limit of

hA , uniformly over compact sets in C.~N k

It can be proved that there exists a sequence of positive numbers

n -0 such that h- g uniformly over compact sets in the complex plane.
n n

The proof can be done by means of similar arguments to those of theorem 3 and

theorem 4 and it will not be included here.

To finish this paper, we would like to point out that efficient algo-U
rithms for solving the optimization problem (37a) - (37b) - (37c) are being

studied. We hope to present these numerical results in a future paper.
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